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Abstract

One-dimensional turbulence (ODT) is used to model and simulate the buoyant turbulent ¯ow in a vertical slot.
ODT reproduces available Direct Numerical Simulation results on the Rayleigh number dependence of wall heat
transfer and of other ¯ow properties of interest. Extended ranges of Rayleigh and Prandtl numbers are investigated

with ODT to explore the broader behavior of the ¯ow, focusing on its connection to classical scaling
arguments. Published by Elsevier Science Ltd.

1. Introduction

One-dimensional turbulence (ODT) is a recent devel-

opment in turbulence modeling, which has been shown
to apply to various turbulent ¯ow con®gurations.
These include [1±4] homogeneous turbulence, bound-
ary layers, Couette ¯ow, temporal jets, shear layers,

Rayleigh convection, and combustion in the turbulent-
jet di�usion ¯ame. In this work, we extend the applica-
bility of the model to include buoyant convection in a

vertical slot. It has been noted [5] that the dynamics of
this ¯ow di�er from those of Rayleigh±BeÂ nard convec-
tion, because the statistical inhomogeneity is aligned

perpendicular to the direction of the buoyant force.
The recent availability of experimental data [6,7] and
of Direct Numerical Simulation (DNS) data [5,8] on
this problem permits useful comparisons of scaling

properties of the model.
Establishing credibility by reproducing known

results in turbulent ¯ows is a common objective of tur-

bulence modeling e�orts. A less common objective is
to shed light on unknown aspects of turbulence in
¯ows of either scienti®c or engineering signi®cance [9].
In addition to comparison with known DNS results,

ODT is used here to assess the applicability of basic
scaling arguments to the Rayleigh number dependence
of physical quantities such as the heat transfer and the

peak mean velocity. A study of such relationships over
a range of Prandtl numbers in ODT sheds new light
on which ¯ow parameters are most important in the

scaling behavior.

2. Problem description

The problem considered here is vertical slot convec-
tion as shown in Fig. 1, in which buoyant ¯uid ¯ows
between two in®nite parallel walls. The ¯ow is driven

by a temperature di�erence DT � T1 ÿ T2, imposed as
a Dirichlet boundary condition across two vertical
walls which are separated by a distance h. The pro®le

of temperature T generates a buoyant momentum
source through the Boussinesq approximation. This
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momentum source term is gb�Tÿ Tref�, where g is the
magnitude of the acceleration due to gravity, b is the

thermal expansion coe�cient, and Tref is a ®xed refer-
ence temperature. For su�ciently large DT, this buoy-
ant term drives the ¯ow to a turbulent state. Positions
and velocities are arranged so that x, u are wall-nor-

mal, and z, w are stream wise. The relevant non-
dimensional parameters for this ¯ow include the Ray-

leigh number Ra which drives the ¯ow, the Prandtl
number Pr, and the Nusselt number Nu which charac-

terizes the heat transfer across the slot, where

Ra � gbDTh3

kn
, �1�

Pr � n
k
, �2�

Nu � qwh

kDT
: �3�

In these expressions, n is the kinematic viscosity, k is
the thermal di�usivity, and

qw � ÿk
�
@ hTi
@x

�
w

�4�

is the wall heat ¯ux.

3. Model description

First proposed by Kerstein [1], one-dimensional tur-
bulence o�ers a conceptual departure from traditional
turbulence models. Every modeling approach addresses

Nomenclature

A ODT model constant
Cf friction coe�cient
E eddy triplet map

Lmax location of the maximum mean velocity
Mdt eddy-based momentum ¯ux
Nu Nusselt number = qwh=�kDT �
P pressure
Pr Prandtl number = n=k
Q ¯ux of arbitrary property f
Ra Rayleigh number = gbDTh3=�kn�
Re Reynolds number
T1 left wall temperature
T2 right wall temperature

DT T1 ÿ T2

T local temperature
Tc mean centerplane temperature

Tref reference temperature
�T bulk temperature
Wmax maximum mean velocity

g magnitude of the acceleration due to grav-
ity

h slot width

l eddy size
t time

qw wall heat transfer
x cross-stream coordinate
x0 location of an eddy's left endpoint

w streamwise velocity
� @w@x �eddy eddy velocity gradient
z streamwise coordinate

Greek symbols
b thermal expansion coe�cient

Z normalized position within an eddy
k thermal di�usivity
l eddy rate
n kinematic viscosity

r ¯uid density
t eddy time scale
f arbitrary ¯uid property

Subscripts
i inner scales

j eddy summation index
o outer scales
p evaluated at a location previous to an eddy

event

Fig. 1. Vertical slot convection.
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the commonly prohibitive expense of direct compu-
tation of turbulent ¯ows. The expense stems from the

combination of two aspects: turbulence is inherently
three-dimensional, and turbulence is characterized by a
large range of length scales. A viable modeling

approach can be based on reducing the computational
burden of one or the other of these aspects. Tra-
ditional RANS, PDF, and LES models retain the

three-dimensional representation of the ¯ow, but
reduce the dynamic range by modeling the small-scale
phenomena. ODT takes the alternative approach: the

full dynamic range of scales is represented, but only on
a one-dimensional domain. Then the three-dimensional
aspects of the ¯ow are modeled. The range of ¯ows to
which ODT applies consists of those ¯ows in which

there is at most one dominant direction of spatial in-
homogeneity. For the slot convection considered here,
that direction is wall-normal and horizontal.

An ODT model involves instantaneous governing
equations, solved on a one-dimensional domain. All
processes involving molecular di�usion (viscosity, ther-

mal di�usivity, etc.) plus source terms are represented
exactly in these equations. The three-dimensional pro-
cess of convection is modeled in one dimension as a

series of instantaneous eddy events, as shown in Fig. 2.
The size, location, and timing of these events are con-
trolled by a probability distribution whose parameters

depend on the viscosity, density, and velocity pro®le.
It has been shown [1] that an ensemble of such eddy

events reproduces the Kolmogorov spectrum in a simu-
lation of homogeneous turbulence.

3.1. Governing equations

In the present problem, the one-dimensional domain
runs horizontally from the left wall to the right wall. It

is discretized in an evenly spaced grid which is resolved
to the smallest scales of ¯ow and ¯uid property vari-
ation. The governing equations for vertical velocity w

and temperature T are

@w

@ t
� ÿ1

r
@P

@z
� gb�Tÿ Tref � � n

@ 2w

@x 2
, �5�

@T

@ t
� k

@ 2T

@x 2
: �6�

In these equations, r is the ¯uid density, taken to be
constant under the Boussinesq approximation. The

pressure gradient term is taken to be constant over the
domain, and can be expressed in terms of known
quantities, depending on whether the cavity is con-

sidered open or closed. In an open cavity, the pressure
gradient counterbalances the hydrostatic weight of the
¯uid. In this case, the pressure gradient term is set to
zero, and Tref is set to the average of the two wall tem-

peratures. In a closed cavity, the pressure gradient
term can be used to impose mass conservation on an
instantaneous basis:

@

@ t

�h
0

w dx � 0: �7�

Spatial integration of Eq. (5) with this constraint gives
a pressure gradient of

1

r
@P

@z
� gb

ÿ
�Tÿ Tref

�
� n

h

�
@w

@x

�h
0

, �8�

where

�T � 1

h

�h
0

T dx �9�

is the instantaneous bulk temperature. The physical in-
terpretation here is that the pressure gradient adjusts
itself on an instantaneous basis in order to ensure that

no net mass enters or leaves the in®nite system Ð this
is analogous to the solution of the Poisson equation
for pressure in the Navier±Stokes equations. ODT

results presented here are associated with the closed
system by using Eq. (8), but with its viscous term
dropped. Neglect of this term was observed to have noFig. 2. The convection model: an eddy event map.

T.D. Dreeben, A.R. Kerstein / Int. J. Heat Mass Transfer 43 (2000) 3823±3834 3825



signi®cant e�ect on the results. The velocity equation
simpli®es to

@w

@ t
� gb�Tÿ �T� � n

@ 2w

@x 2
: �10�

This, in conjunction with Eq. (6), speci®es the govern-

ing equations.

3.2. Eddy events

Three-dimensional convection is modeled through
the use of eddy events. These events are local instan-
taneous mappings of the spatial coordinate onto itself.

Each eddy is characterized by a left endpoint x0 and a
size l. Then

Z � xÿ x 0

l
�11�

de®nes the normalized location within the eddy, and
the map E�Z� is de®ned by speci®cation of its inverse,

shown in Fig. 3:

E ÿ1�Z� �
8<: 3Z for 0RZ < 1=3
2ÿ 3Z for 1=3RZ < 2=3
3Zÿ 2 for 2=3RZ < 1

: �12�

The e�ect of the map is to modify the pro®le of each
dependent variable for x 0RxRx 0 � l as shown in

Fig. 2. For any ¯ow property, we use the subscript `p'
to denote its value just previous to the appearance of
any eddy. Then the e�ect of an eddy on each pro®le is

to assign

w�x 0 � Zl� � wp

h
x 0 � E ÿ1�Z�l

i
, �13�

T�x 0 � Zl� � Tp

h
x 0 � E ÿ1�Z�l

i
: �14�

It follows from this formulation that for any ¯uid
property f, the expression�x 0�l

x 0

f dx �15�

is conserved by the map. In particular, setting f � 1
for incompressible ¯ows ensures that each eddy con-
serves mass.

The model speci®es the timing, size, and location of
each eddy by sampling from an eddy rate distribution.
The number of eddies of size l and time scale t which

are expected to appear within dl of size l, within dy0 of
location y0, and within dt of time t is l�l, t� dl dy0 dt:
The speci®cation of the eddy rate is the same as in pre-
vious ODT implementations [3,4] in which

l � 1

l 2t
, �16�

where the time scale t is

1

t
�

������������������������������������������������������ 
A

�
@w

@x

�
eddy

! 2

ÿ
�
16n
l 2

� 2

vuut , �17�

and A is a model constant. The expression �@w=@x�eddy

is an instantaneous velocity gradient, averaged over
the length of the eddy. This eddy average is�
@w

@x

�
eddy

� 2�WR ÿWL �
l

, �18�

with

WL � 2

l

�x 0�l=2

x 0

w�x, t� dx �19�

WR � 2

l

�x 0�l

x 0�l=2
w�x, t� dx: �20�

In the right-hand side of Eq. (17), the ratio of the ®rst
term to the second is the square of an eddy Reynolds
number. When this Reynolds number is high, the vis-

cous term becomes negligible and the eddy time scale
becomes inversely proportional to the eddy velocity
gradient. When the eddy Reynolds number is low, the
viscous term increases t and therefore diminishes the

likelihood of an eddy appearance. When the expression
under the square-root sign is negative, t is set to in®n-
ity, and eddies are suppressed. The wall boundary con-

dition of impermeability is imposed on the eddies by
excluding any eddy which extends out of the domain
beyond a solid wall. The constant A is set to the value

A = 0.23, a value chosen to make ODT reproduce the
wall shear stress in a boundary layer [1]. Current ODT
stimulations slow that this value of A reproduces theFig. 3. Inverse eddy map E ÿ1�Z�:
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shear stress for channel ¯ow as well. Stress as a func-

tion of Reynolds number for these simulations is
shown in Fig. 4.
In the model formulation of ODT, Eqs. (6), (9) and

(10) evolve in continuous time, with eddies of random
size and location appearing at random times, as con-
trolled by l in Eqs. (16)±(20). The numerical im-
plementation of the eddy selection is described in

previous work [1,4].

3.3. ODT Reynolds equations

The governing equations for mean momentum and
mean temperature are derived from the ODT model

using traditional control-volume analysis. For slot con-
vection, we consider a horizontal slab over a short
time increment dt which extends from the wall at the

left boundary to an arbitrary point x in the domain, as
shown in Fig. 5. The Reynolds decomposition for vel-

ocity and temperature is

w � hwi � w 0, �21�

T � hTi � T 0, �22�

where angle brackets denote an ensemble average.

Focusing ®rst on the momentum balance, dynamic
terms are expressed per unit length in the span-wise
and stream-wise directions, y and z respectively. The

¯ow properties of the model are instantaneously
homogeneous in these directions. Momentum changes
in the slab by virtue of Eq. (10), and because of

momentum ¯ux across the side boundary at x due to
the eddies. If Mdt is the amount of momentum per
unit mass brought in by the eddies through the bound-
ary x during time increment dt, the instantaneous bal-

ance of momentum in the slab is�x
0

�
w�t� dt� ÿ w�t�� dx 0

� gb
�x
0

�Tÿ �T� dx 0 dt� n
�
@w

@x

�x
0

dt�Mdt: �23�

The explicit connection of Mdt to the eddies is

described in Appendix A. If Eq. (23) is averaged, then
all of its terms become di�erentiable. In the limit as dt
becomes small, the balance of mean momentum

becomes

@

@ t

�x
0

hwi dx 0 � gb
�x
0

ÿ
hTi ÿ h �Ti

�
dx 0

� n
�
@ hwi
@x

�x
0

�@ hMdti
@ t

: �24�

The last term of Eq. (24) is the ODT model for Rey-

nolds shear stress:

ÿhu 0w 0i � @ hMdti
@ t

: �25�

This assignment makes sense because of the physical
correspondence between the quantity @ hMdti=@ t and

real Reynolds shear stress: In each case we have the
mean rate at which vertical momentum is convected
into the slab through its side boundary at x. Substitut-

ing Eq. (25) into Eq. (24) and di�erentiating with
respect to x gives the Reynolds equation imposed by
ODT:

@ hwi
@ t
� ÿ@ hu

0w 0i
@x

� gb
ÿ
hTi ÿ h �Ti

�
� n

@ 2hwi
@x 2

: �26�

A similar balance of energy in the slab leads to the
ODT governing equation for mean temperature:

Fig. 4. Wall shear stress as a function of Reynolds number in

fully-developed channel ¯ow: ODT simulations are shown

with experimental data compiled by Dean [14]. Re is based on

the bulk velocity and channel full width; Cf is normalized by

the mean centerline velocity.

Fig. 5. Characteristic ¯ow element.
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@ hTi
@ t
� ÿ@ hu

0T 0i
@x

� k
@ 2hTi
@x 2

, �27�

where the scalar ¯ux term ÿhu 0T 0i is the mean rate at
which temperature is convected into the slab through
its side boundary at x.

4. ODT simulation results

The objectives here are twofold: First, we present
ODT results for slot convection at the Prandtl number
of air, Pr = 0.71, with comparison to DNS. This

helps to establish which aspects ODT reproduces and
which aspects it does not. Second, we show ODT at
Prandtl numbers not yet investigated experimentally or

with DNS to shed new light on traditional scaling
arguments.
For each case, the system was driven from a quies-

cent ¯ow ®eld to a statistically stationary state by
imposing the wall boundary conditions on tempera-
ture. After stationarity was reached, time averaging

was used to obtain mean quantities.

4.1. Results at Pr = 0.71

ODT simulations of slot convection were run at the
same two values of Ra as the experiments of [7]: Ra �
8:6� 105 and Ra � 1:43� 106, and at the same four

values of Ra as the DNS of [5]: Ra � 5:4� 105,
8:2� 105, 2:0� 106, and 5:0� 106: Several larger
values of Ra were also run with ODT, up to about

two decades beyond the highest value achieved with
the DNS. Figs. 6 and 7 show ODT mean velocity and
mean temperature, respectively, for the conditions of
Betts and Bokhari's experiments, together with their

data. Figs. 8 and 9 show back-to-back DNS compari-

sons of the same quantities, non-dimensionalized as in

[5]. For the DNS comparisons, DNS results are shown
in the left half of the slot, and ODT results are shown
in the right half of the slot. Agreement with tempera-
ture pro®les is good, although ODT underpredicts the

heat transfer at the wall. ODT overpredicts the magni-
tude of the mean velocities by a consistent factor of 2,
and shows curvature in the core region which is not

seen in the DNS. These results re¯ect the fact that
ODT has been formulated to be robust with respect to
scalings and other parameter dependencies, despite pre-

dictive discrepancies such as those that are apparent in
Figs. 6 and 8. The simpli®cations that cause discrepan-
cies while preserving scaling properties are discussed in

detail elsewhere [1].
ODT successfully reproduces scaling relationships of

mean velocity and mean temperature found in the

Fig. 7. Comparison of mean temperature pro®les for measure-

ments [7] and ODT.

Fig. 8. Comparison of mean velocity pro®les for DNS [5] and

ODT.

Fig. 6. Comparison of mean velocity pro®les for measure-

ments [7] and ODT.
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DNS results and described in [10]. Based on the pre-
vious arguments of George and Capp [11], Nieuwstadt

and Versteegh found inner scales for velocity, length,
and temperature as functions of gb, qw, and k, but not
of h, as follows:

wi � �gbqwk�1=4, �28�

li � k3=4�gbqw �ÿ1=4, �29�

Ti � q3=4w �gbk�ÿ1=4: �30�

Further, they found outer scales by supposing that the
velocity, length and temperature are functions of gb,
qw, and h, but not n or k:

wo � �gbqwh�1=3, �31�

lo � h, �32�

To � q 2=3
w �gbh�ÿ1=3: �33�

The appropriateness of these scalings was tested in [10]
by seeking a collapse of the results over di�erent
values of Ra. The authors reported good inner and

outer collapses of temperature, poor inner collapse of
mean velocity, and a marginal outer collapse of mean
velocity. Figs. 10±13 show that ODT reproduces most

of the scaling behavior shown in the DNS, both where
collapse occurs and where it does not.
Nieuwstadt and Versteegh further examined the Ra

dependence of key ¯ow parameters, including the Nus-
selt number Nu, the peak mean velocity Wmax, and the
location of the peak mean velocity Lmax. In the general
scaling relationship Nu0Raa, they derived the expo-

nent value a � 1=3 through asymptotic matching of
the mean temperature pro®les. Their DNS calculations

of Nu showed a very good ®t to the 1/3 exponent.
Fig. 14 shows that ODT reproduces the 1/3 exponent.
The Ra dependence of the maximum mean velocity

Wmax for ODT and DNS is shown in Fig. 15, together
with inner and outer scalings of [10] and a

������
Ra
p

power
law. Nieuwstadt and Versteegh derived inner and outer

scaling exponents of 1/3 and 4/9, respectively, but
inferred from their data that a 1/2 power law provides
a better ®t. ODT reproduces that 1/2 power law as

well. The location Lmax of this velocity maximum is
shown for ODT and DNS in Fig. 16, together with the
inner and outer scaling relations, and a closer-®tting
ÿ1/6 power law. Here again, ODT matches the DNS,

but neither matches the derived inner and outer scaling
relations. We conclude here that ODT performs es-

Fig. 10. Mean temperature pro®les using the inner scaling of

Nieuwstadt and Versteegh: comparison of ODT with DNS

[5].

Fig. 9. Comparison of mean temperature pro®les for DNS [5]

and ODT.
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pecially well in its ability to match the DNS Ra scaling

of key turbulence quantities. In each case, ODT repro-
duces the DNS scaling powers, independently of their
consistency with theoretically derived exponents.

4.2. ODT and scaling behavior

The cost e�ectiveness of ODT relative to DNS
enables simulations in a wider range of parameter

space. In addition to raising Ra higher by two decades,
the Prandtl number was varied in an e�ort to build a
more comprehensive picture of the scaling behavior.

Because ODT reproduces the scaling of Nu, Wmax, and
Lmax as well as it does for Pr = 0.71, and because
molecular transport is represented exactly at all scales

in Eqs. (6) and (10), the scaling behavior of ODT at
other values of Pr is likely to be a strong indication of
the physical scaling behavior.

With the DNS for Pr = 0.71, Nieuwstadt and Ver-
steegh were able to use scaling arguments to explain

the behavior of Nu, but not of Wmax or Lmax. Using
ODT over a range of Prandtl numbers, we use di�er-
ent scaling arguments which explain the behavior of

Wmax, but not of Nu or Lmax.
Vertical slot convection has the same ¯ow par-

ameters as its horizontal counterpart, Rayleigh±BeÂ nard

convection. We draw from arguments for that case,
which are extensively reviewed in [12]. A relatively
straightforward argument [13] for the scaling of the

heat transfer goes as follows: The complete list of par-
ameters for this ¯ow is k, n, gb, DT, and h. The physi-
cal hypothesis is then to suppose that qw depends only
on the features it can see in the near-wall region, and

so the global parameter h can be crossed o� the list.
Under this assumption, if the walls were moved farther

Fig. 11. Mean temperature pro®les using the outer scaling of

Nieuwstadt and Versteegh: comparison of ODT with DNS

[5].

Fig. 12. Mean velocity pro®les using the inner scaling of

Nieuwstadt and Versteegh: comparison of ODT with DNS

[5].
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apart but all other physical parameters were held ®xed,
then the wall heat transfer would not change. It fol-

lows from this that

qw � f�k, n, gb, DT�, �34�

where f is an unknown function. The dimensions of qw
are (length � temperature/time). The only way to form
a quantity with those dimensions from a function with

the arguments of Eq. (34) is to write

qw0�gbk�1=3DT 4=3Pra, �35�

where a is any real power. Then when we nondimen-
sionalize qw to form Nu, we ®nd

Nu0Ra1=3, �36�

for any ®xed Pr. This matches the scaling behavior of

Nu at Pr = 0.71 of Fig. 14, but unlike the argument
of [5], it does not rely on any prior information about
the mean temperature pro®le.

We can evaluate further how well this scaling argu-
ment applies by using ODT at di�erent Prandtl num-
bers. ODT simulations of slot convection were run at

a lower Prandtl number Pr = 0.1, for Ra ranging
from 7.6 � 104 to 5.5 � 107. They were run at a higher
Prandtl number Pr = 5.0 for Ra ranging from 3.8 �
106 to 2.7 � 109. The ODT Ra scaling of Nu at the
di�erent values of Pr is shown in Fig. 17, together
with the 1/3 power law. Here we see that the Nu

dependence on Ra departs from the 1/3 power law:
Least squares ®ts to the log±log plots give scaling
exponents of 0.27 and 0.44 for the low and high Pr
runs, respectively. These values are taken from theFig. 13. Mean velocity pro®les using the outer scaling of

Nieuwstadt and Versteegh: comparison of ODT with DNS

[5].

Fig. 14. Nusselt vs. Rayleigh number: comparison of DNS [5]

with ODT and a cube root power law at Pr = 0.71.

Fig. 15. Maximum mean velocity vs. Rayleigh number: com-

parison of DNS [5] with ODT and a square root power law

at Pr = 0.71.
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data at the six highest Rayleigh numbers in each case.
This scaling behavior contradicts the relation (36), and
suggests that the above scaling argument for heat

transfer does not apply to slot convection in general.
In particular, the wall heat transfer depends on the
slot width h. The apparent lack of h dependence for Pr

= 0.71 is fortuitous.
Somewhat more promising results for the Ra scaling

of Wmax are obtained with a similar scaling argument.

If we suppose that Wmax can be expressed as a func-
tion of gb, DT, and h, but not of molecular properties
k or n, then dimensional analysis imposes the result

Wmaxh

k
0�Ra Pr�1=2: �37�

For ®xed Pr, Eq. (37) reduces to

Wmaxh

k
0Ra1=2: �38�

This matches both the ODT and DNS scaling at Pr =
0.71 shown in Fig. 15. The 1/2 exponent was not

found by Nieuwstadt and Versteegh [10] because they
characterized the temperature dependence with qw,
rather than DT, for consistency with their asymptotic

pro®le matching. While the present scaling argument
sacri®ces such consistency, it provides a strong sugges-
tion that the maximum mean velocity is a globally

determined quantity, and does not depend on molecu-
lar transport. Fig. 18 shows the scaling of Wmax based
on ODT results for three di�erent Pr values. The close

agreement with the 1/2 exponent for all cases suggests
that this scaling behavior of Wmax is a robust result.
The scaling hypothesis that Wmax is independent of
molecular properties k and n is further tested in

Fig. 19: Under such independence, a plot of Wmaxh=k
versus the product Ra Pr should collapse to a single
line of slope 1/2 on a log±log plot, as given by Eq.

(37). The lack of complete collapse shows a weak
Prandtl number dependence of Wmax.
The location Lmax of the peak mean velocity is

plotted as a function of Ra for the three di�erent
values of Pr in Fig. 20. Although the ÿ1/6 power law
is a good ®t for all the cases, it continues to defy any
scaling argument.

Although the use of DT as a scaling parameter has
been shown [5] to be inconsistent with known features
of the mean temperature, we ®nd that it works well for

the scaling of the peak mean velocity. Because of this
and the unexplained scaling of Lmax, no comprehen-
sive, systematic scaling interpretation is apparent for

this ¯ow.

Fig. 16. Location of maximum velocity vs. Rayleigh number:

comparison of DNS [5], ODT, and inner and outer scaling

results at Pr = 0.71.

Fig. 17. ODT Nu scaling at di�erent values of Pr, compared

with the 1/3 power law.

Fig. 18. ODT Wmaxh=k scaling at di�erent values of Pr, com-

pared with the 1/2 power law.
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5. Conclusion

ODT is used here to simulate the buoyant convec-

tion which is driven by an imposed temperature di�er-
ence across two vertical walls. Additional modeling
terms are restricted to the addition of a buoyant source
term in the velocity equation, using the Boussinesq ap-

proximation. No empirical constants are added to the
model to accommodate this ¯ow; the value of the con-
stant A in the eddy-rate expression is set to 0.23,

which is identical to the value used in previous wall-
bounded ¯ow simulations.
Comparisons with DNS data show that ODT repro-

duces much of the scaling behavior of the ¯ow which
is seen at Pr = 0.71. Within a constant factor, ODT
reproduces the Ra dependence of the heat transfer,

maximum mean velocity, and its location. ODT is used

to further explore the scaling behavior by simulating
the ¯ow at di�erent Prandtl numbers. ODT results

suggest that the scaling Nu0Ra1=3 applies only to the
case in which Pr = 0.71, and therefore that the heat
transfer depends on the wall separation in general.

Results also suggest that the maximum mean velocity
scales as

������
Ra
p

over a range of Prandtl numbers, con-
sistent with a simple argument in which the molecular

properties play a minimal role. These results suggest
that it would be fruitful to run DNS or experiments of
this ¯ow con®guration at di�erent Prandtl numbers to

see if these relations carry over to real ¯ows.
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Appendix A. ODT eddy-based ¯ux

Fluxes of quantities can be written explicitly in
terms of the instantaneous pro®les and the eddy map
of Eq. (12) and Fig. 3. We are interested in the net
transfer of an arbitrary property f by the eddies into

the slab of Fig. 5 through the right-side boundary at
location x. Suppose the jth eddy has left endpoint x 0, j,
size lj, and occurs at time tj: Let x

0 be a dummy vari-

able which traverses the length of the eddy, just after
the eddy has occurred. Let dQj be the net change of� x
0 f�x̂� dx̂ caused by eddy-induced transfer of f into

the small volume within dx 0 of x 0: We need to know
where this volume was before the eddy occurred. This
previous location is

xp, j � ljE
ÿ1
�
x 0 ÿ x 0, j

lj

�
� x 0, j, �A1�

where Eÿ1 is the inverse eddy triplet map given by Eq.
(12). Then we have

dQj �
h
H�xÿ x 0 � ÿH�xÿ xp, j �

i
f�xp, j, tj � dx 0, �A2�

where the expression with Heaviside functions in the

square brackets is 1 if the ¯uid at x 0 has crossed into
the slab, ÿ1 if the ¯uid at x 0 has crossed out of the
slab, and zero if it has not crossed x in either direction.

The non-local behavior of ODT is brought out in Eq.
(A2): the stu� crossing location x was previously at lo-
cation xp, j given by Eq. (A1), and xp, j does not

Fig. 19. ODT Wmaxh=k scaling at di�erent values of Ra Pr,

compared with the 1/2 power law.

Fig. 20. ODT Lmax=h scaling at di�erent values of Pr, com-

pared with the ÿ1/6 power law.

T.D. Dreeben, A.R. Kerstein / Int. J. Heat Mass Transfer 43 (2000) 3823±3834 3833



approach x in the limit as dt40 or as dx 040: If a
total of nt eddies appear within dt=2 of time t, then the

net amount of f brought into the slab is determined
by integrating Eq. (A2) over the eddy, and then sum-
ming over all nt eddies:

Qdt �
Xnt
j�1

�x 0, j�lj

x 0, j

h
H�xÿ x 0 � ÿH�xÿ xp, j �

i
� f�xp, j, tj � dx 0 �A3�

For the case where f is the velocity w, this Qdt is Mdt

of Eq. (23). Turbulent ¯uxes are then obtained by

averaging Eq. (A3) and di�erentiating with respect to
time, in that order. For the velocity and temperature
in the ¯ow considered here, we have

ÿhu 0w 0i � @

@ t

*Xnt
j�1

�x 0, j�lj

x 0, j

h
H�xÿ x 0 �

ÿH�xÿ xp, j �
i
w�xp, j, tj � dx 0

+
,

�A4�

ÿhu 0T 0i � @

@ t

*Xnt
j�1

�x 0, j�lj

x 0, j

h
H�xÿ x 0 �

ÿH�xÿ xp, j �
i
T�xp, j, tj � dx 0

+
:

�A5�
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